Recommendation in Context-Rich Environment: An Information Network Analysis Approach
نویسندگان
چکیده
Recommendation has received tremendous attention recently due to its wide and successful applications across different domains. Different from traditional setting of recommendation tasks, modern recommendation tasks are usually exposed in a context-rich environment. For example, in addition to a user-item rating matrix, users and items are connected to other objects via different relationships and they are usually associated with rich attributes, such as text and spatio-temporal information. It turns out that heterogeneous information network serves a natural data model to capture the rich context of these recommendation tasks. In this tutorial, we will systematically introduce the methodologies of using heterogeneous information network mining approach to solve recommendation tasks, and demonstrate the effectiveness of such methods using different applications, ranging from collaboration recommendation in scientific research network to job recommendation in professional social network, and to drug discovery in biomedical networks. The topics to be covered in the tutorial include: (1) overall introduction; (2) recommendation in heterogeneous information networks, which introduces the general methodology of how to model the recommendation problem as a heterogeneous information network mining problem; (3) recommendation in a text-rich setting, where the information network is further enriched by refined analysis of text information; (4) recommendation with spatio-temporal information, where entities and relationships in the network are associated with spatio-temporal attributes; and (5) research frontiers for context-rich recommendation.
منابع مشابه
Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach
In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...
متن کاملAdaptive Information Analysis in Higher Education Institutes
Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...
متن کاملAdaptive Information Analysis in Higher Education Institutes
Information integration plays an important role in academic environments since it provides a comprehensive view of education data and enables mangers to analyze and evaluate the effectiveness of education processes. However, the problem in the traditional information integration is the lack of personalization due to weak information resource or unavailability of analysis functionality. In this ...
متن کاملSemantically Rich Recommendations in Social Networks for Sharing, Exchanging and Ranking Semantic Context
Recommender algorithms have been quite successfully employed in a variety of scenarios from filtering applications to recommendations of movies and books at Amazon.com. However, all these algorithms focus on single item recommendations and do not consider any more complex recommendation structures. This paper explores how semantically rich complex recommendation structures, represented as RDF g...
متن کاملReasoning on Context Satisfiability for Service Recommendation in Mobile Network
The Ubiquitous Computing envisions a world of communicating mobile devices. As mobile devices usually have limited resources, it brings up the challenge to search and invoke services at any time and any place in an accurate, efficient and adaptive way. In this paper, we propose to filter services by matchmaking the precondition of service invocation and the context information of service consum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017